首页> 外文OA文献 >Lossy hyperspectral image compression on a graphics processing unit: parallelization strategy and performance evaluation
【2h】

Lossy hyperspectral image compression on a graphics processing unit: parallelization strategy and performance evaluation

机译:图形处理单元上的有损高光谱图像压缩:并行化策略和性能评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is an intense necessity for the development of new hardware architectures for the implementation of algorithms for hyperspectral image compression on board satellites. Graphics processing units (GPUs) represent a very attractive opportunity, offering the possibility to dramatically increase the computation speed in applications that are data and task parallel. An algorithm for the lossy compression of hyperspectral images is implemented on a GPU using Nvidia computer unified device architecture (CUDA) parallel computing architecture. The parallelization strategy is explained, with emphasis on the entropy coding and bit packing phases, for which a more sophisticated strategy is necessary due to the existing data dependencies. Experimental results are obtained by comparing the performance of the GPU implementation with a single-threaded CPU implementation, showing high speedups of up to 15.41. A profiling of the algorithm is provided, demonstrating the high performance of the designed parallel entropy coding phase. The accuracy of the GPU implementation is presented, as well as the effect of the configuration parameters on performance. The convenience of using GPUs for on-board processing is demonstrated, and solutions to the potential difficulties encountered when accelerating hyperspectral compression algorithms are proposed, if space-qualified GPUs become a reality in the near future
机译:迫切需要开发新的硬件体系结构,以在卫星上实现用于高光谱图像压缩的算法。图形处理单元(GPU)代表了一个非常诱人的机会,它可以极大地提高数据和任务并行的应用程序的计算速度。使用Nvidia计算机统一设备架构(CUDA)并行计算架构,在GPU上实现了高光谱图像有损压缩的算法。解释了并行化策略,重点是熵编码和位打包阶段,由于存在数据依赖性,因此需要更复杂的策略。通过将GPU实施与单线程CPU实施的性能进行比较,可以获得实验结果,显示出最高可达15.41的加速比。提供了该算法的概要分析,证明了所设计的并行熵编码阶段的高性能。介绍了GPU实现的准确性以及配置参数对性能的影响。演示了使用GPU进行板载处理的便利性,并提出了解决方案,以解决如果加速使用空间限定的GPU在不久的将来实现高光谱压缩算法时遇到的潜在困难

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号